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ITERATIVE METHODS FOR CYCLICALLY REDUCED 
NON-SELF-ADJOINT LINEAR SYSTEMS. II 

HOWARD C. ELMAN AND GENE H. GOLUB 

ABSTRACT. We perform an analytic and experimental study of line iterative 
methods for solving linear systems arising from finite difference discretizations 
of non-self-adjoint elliptic partial differential equations on two-dimensional do- 
mains. The methods consist of performing one step of cyclic reduction, followed 
by solution of the resulting reduced system by line relaxation. We augment pre- 
vious analyses of one-line methods, and we derive a new convergence analysis 
for two-line methods, showing that both classes of methods are highly effective 
for solving the convection-diffusion equation. In addition, we compare the ex- 
perimental performance of several variants of these methods, and we show that 
the methods can be implemented efficiently on parallel architectures. 

1. INTRODUCTION 

We consider iterative methods for solving linear systems of the two-cyclic 
type that arise from discretizations of two-dimensional elliptic partial differen- 
tial equations. Such systems can be ordered using a red-black ordering, so that 
they have the form 

(1.1) (D C) (U:(rD) = C ' 

where D and F are diagonal matrices. If block elimination is used to decouple 
the "red" points u(r) from the "black" points u(b), the result is a reduced system 

(1.2) [F-ED C]u =v -ED v 

Let 

(1.3) S=F-ED- C, s = v(b) ED lv(r) 
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In [4], we showed that the coefficient matrix S is also sparse, and we analyzed 
a class of iterative methods for solving (1.2) when (1.1) comes from a finite dif- 
ference discretization of the constant-coefficient convection-diffusion equation 

(1.4) sfu--Au+aux +uT =f 

with Dirichlet boundary conditions. In particular, we showed that although S 
is typically nonsymmetric, it can be symmetrized in a wide variety of circum- 
stances. The symmetrized form was used to analyze the convergence properties 
of a splitting operator based on a block Jacobi splitting of S, using a one-line 
ordering of the underlying grid. 

In this paper, we refine and augment the analysis of [4]. We show that if 
(1.1) is derived from the convection-diffusion equation (1.4), then the reduced 
system is itself a discretization of the differential equation. We consider a vari- 
ety of orderings of the rows and columns of S and examine their effects on the 
convergence of iterative methods for solving (1.2), and on implementation. In 
particular, we present several variants of the one-line ordering of [4] based on 
red-black and toroidal groupings of unknowns. In addition, we present an anal- 
ysis of two-line ordering strategies for solving (1.2); such orderings have been 
studied for self-adjoint problems in [6, 13]. In all of these cases, the reduced 
matrices have block Property A, so that Young's analysis of iterative methods 
[19] is applicable. We use this analysis to determine the convergence proper- 
ties of block Jacobi, Gauss-Seidel and successive overrelaxation (SOR) methods 
for solving the discrete convection-diffusion equation, in terms of discrete cell 
Reynolds numbers ah/2 and Th/2. In addition, we present the results of nu- 
merical experiments showing some effects of ordering strategies not revealed 
by the analysis. Together, the analytic and numerical results show that the 
two types of orderings are very effective for solving (1.4), with the two-line or- 
derings somewhat more effective than the one-line orderings. The variants of 
the methods based on red-black orderings of the reduced system are typically 
slightly slower (in terms of iteration counts), but they can be implemented more 
efficiently on parallel architectures. 

An outline of the paper is as follows. In ?2, we describe two discretization 
schemes for (1.4), and we present an analysis of the truncation error associated 
with taking the reduced system as an approximation of (1.4). In ?3, we present 
several variants of the one-line ordering for the unknowns of (1.2), and we 
show how the results of [4] are used to derive a convergence analysis of all the 
associated one-line iterative methods when the linear system comes from (1.4). 
In ?4, we present the two-line orderings and the convergence analysis of the 
corresponding two-line iterative methods applied to (1.2). In ?5, we outline an 
analysis due to Parter [13] and Parter and Steuerwalt [15] that complements our 
results in the limiting case h -+ 0. In ?6, we describe numerical experiments 
that confirm and supplement the convergence analysis, including tests in which 
the block iterative methods, with various orderings, are used to solve a set 
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of nonsymmetric problems derived from (1.4). Finally, in ?7 we draw some 
conclusions. 

2. THE CONVECTION-DIFFUSION EQUATION AND THE REDUCED SYSTEM 

Consider the two-dimensional convection-diffusion equation (1.4), posed on 
the unit square Q E (0, 1) x (0, 1) with Dirichlet boundary conditions u = g 
on aQ. Discretization by a five-point finite difference operator leads to a linear 
system 

Au = v, 

where u now denotes a vector in a finite-dimensional space. We discretize 
on a uniform n x n grid, using standard second-order differences for the 
Laplacian [18, 19], and either centered or upwind differences for the first 
derivatives. With u ordered lexicographically in the natural ordering as 
(ul l, I Ul, ..,un n)T, the coefficient matrix has the form 

(2.1) A = tri[A1j1, , A11, Aj j+11] 

Here, tri[X1 _ x1, X1 j+?1] is the (block) tridiagonal matrix whose jth row 
contains X1 >, XJJ, and X. on its subdiagonal, diagonal, and superdiag- 
onal, respectively. The subdiagonal of the first row and the superdiagonal of 
the last row are not defined. The subscripts will be omitted when there is no 
ambiguity. The entries of (2.1) are 

Aj j- I = b I, Ajj = tri[c, a, d], Aj j+l = eI, 

where I is the identity matrix, a, b, c, d and e depend on the discretization, 
2 

and all blocks are of order n . Let h = l/(n + 1) . After scaling by h , the 
matrix entries are given by 

a = 4, b =-(1?), c = -(1 ), 

d = -(l - y), e = -(I -5), 

for the centered difference scheme, where y = ah/2 and (5 = Th/2; and 

a = 4 + 2(y + J), b =-(I + 2a), c = -(1 + 2y), 
d=-l, e=-l, 

for the upwind scheme when a > 0 and z > 0. At the (i, j) grid point, the 
right-hand side satisfies v11 = h2fij, where fij =f(ih, jh). 

In [4], we showed that the reduced matrix S is a skewed nine-point operator. 
At all grid points except those bordering AQ, the computational molecule has 
the form (after multiplying by a) given in Figure 2.1. For grid points next to 
OQ, the diagonal entries of S (center point of the computational molecule) are 
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-2ce -2de 

-C2 a2 - 2be-2cd- -d2 

-2bc -2bd 

- b2 

-(1- 6)2 

-2(1+7) -2(1-7) -2(1+27) -2 
(1-6) (1-6)~~~~~~~(127 - 

_(1 + )2 12 + 2(7y2 + b2) -_(1 _ y)2 -(1I+ 2-/)2 12 + 12(y +6)2) - 
+4(7y+6b)2 

- 

-2(1+7) (I + ) (1 + 2 

-(1 + 6)2 -(1 + 2 ()2 

FIGURE 2.1 
Computational molecules for the reduced system. Top: general 
case. Bottom left: centered differences. Bottom right: upwind 
differences 

different. These values are 

a2 - 2be - cd for points with one horizontal and two 

vertical neighbors in the original grid, 

(2.2) a2 - be - 2cd for points with one vertical and two 
horizontal neighbors, 

a2 - be - cd for points with just two neighbors. 

Suppose centered differences are use to discretize the first-derivative terms. 
At the (i, j) grid point, the discrete operator satisfies $[Au]ij = [Vu]ij + 

O(h 2), i.e., the truncation error of the discretization is of order h 2. The fol- 
lowing result shows that the reduced system (1.2) can also be viewed as a dis- 

2 cretization of (1.4) with truncation error of order h . When (1.2) arises from 
the centered difference discretization of (1.4), let S and s denote the reduced 
matrix and right-hand side resulting from multiplying the reduced system by a 
(= 4). 
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Theorem 1. For 2 < i7 j < n - 1, the reduced operator S satisfies 

lh2 [SU]t = - [(l + a ) u + ?+ 
T h ] + aU + TU + 0(h2) 

and the reduced right-hand side s satisfies 

1 
2Sj. = fiJ + 0(h2). 

Proof. The proof follows directly by taking the first five terms of the Taylor 
series for each of the quantities ui?2j , Ui,j?2 and ui?, j?l, expanded about 

uij Multiplying each entry of S (e.g., from Figure 2.1) by the appropriate 
expanded value of u and summing the coefficients for each partial derivative 
gives 

[SU]IJ = 8h [IU?+ lU- ( - + h2 (1 8 - h u x y~( 8! xx - +8) uy, 4 xy 

5 2 1 2 1 2 5 2 
+ 12 ch uxxx + 4 ThUXxy + 4 ah uxyy + 122 Th uyyy 

--5h2u --Ih2u --h 2u 0h' 
24 xxxx 4 xxyy 24 yyyy 

The reduced right-hand side is given by 

sij 4vlj + (1 + d)vj j_l + (1 + y')v1_ j + (1 -y)vll j + (1 -)vi y+ 

Using the fact that v= h2fij for all (i, j),and expanding fi? j1? and 
in Taylor series about fij, gives 

s= 8h2fij - h4(-Af + afx + Tf ) + 0(h5). a 

The expression for [Su]ij in this proof was computed by hand and checked 
using MACSYMA [10]. The perturbation of the Laplacian (which is also of 
order h 2) can be thought of as an addition of artificial viscosity, see [17]. A 
similar analysis shows that the reduced system for the upwind scheme approx- 
imates (1.4) with truncation error 0(h). 

In the following, we use the symbols S and s to represent the reduced 
matrix and right-hand side, respectively, after scaling by the diagonal entry a. 
Our analysis of iterative methods for solving the reduced system (1.2) is based 
on the fact that in some circumstances, S can be symmetrized by a real diagonal 
similarity transformation. 

Theorem 2. There exists a real diagonal matrix Q such that Q 1SQ is sym- 
metric if the product bcde is positive. 

See [4] for a proof. For the centered difference scheme, be = 1 - 5 2 and 
cd = 1 _ Y2, so that S is symmetrizable if both IYI < 1 and 161 < 1, or if 
both IYI > 1 and IdI > 1 . For the upwind scheme, bcde = (1 + 2y)(1 + 26) 
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-be 

-2 v d -2v e 

-cd-a2 - 2be-2cd --cd 

-2Vd -2Vd 

-be 

-(1 b2) - + > 

-2 (1-)x -2(1-)x -2 (1+27)x 1+27) x 
(1-62) (1-62) (1+26) -2 (1+26) 

-(1-9_.......12 + 2(72 + 62) -(1 y 72) -(I + 27) 12 + 12(y + b) (1 + 27) 
+4(7y+6)2 

-2 2 -2(1+2y)x - 1+2y)x 
(1,62) (1- 62) (1+26) (1+26) 

-(-2) -(I + 2b) 

FIGURE 2.2 
Computational molecules for the symmetrized reduced system. 
Top: general case. Bottom left: centered differences. Bottom 
right: upwind differences 

is positive for all nonnegative y and 6, so that S is always symmetrizable. 
Computational molecules for the symmetrized matrix are shown in Figure 2.2. 

3. ONE-LINE ORDERINGS 

The performance of iterative methods for solving (1.2) depends on the or- 
dering of the underlying grid. In this section, we describe and analyze several 
one-line orderings, in which grid points are grouped by diagonal lines oriented 
at a 450 angle with the horizontal and vertical axes. For the purpose of discus- 
sion, we fix the orientation to be along the NW-SE direction. We consider four 
orderings. 

In the natural one-line ordering, the n - 1 diagonal lines are numbered start- 
ing from one corner (e.g. the SW) from 1 to n - 1, and individual points are 
numbered from bottom to top along the lines. An example for n = 7 is shown 
in the left side of Figure 3. 1, where the line indices are shown outside 0 . The 
corresponding matrix S is block tridiagonal. In the red-black one-line ordering, 
the lines with odd indices from the natural ordering are ordered first, followed 
by those with even indices. The individual grid points are renumbered to be 
consistent with this reordering. An example for n = 7 is shown in the right 
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X X18 X22 - X24 X22 * X12 X24 
6 6 

X12 - X17 * X21 X23 X8 X X21 - XI X23 

xli x16 x20 x7 x20 XO 
x6 xIO x9 x19 x16 x x19 xg 3 

*XS Xg - X14 **X15 * X5 - X18 - 

X2 X4 X8 X13 X2 X14 - X4 X 17 

* XI X3 X7 X1 X13 X 3 

1 2 3 1 4 2 

FIGURE 3.1 
The reduced grid derived from a 7 x 7 grid, with natural one-line 
(left) and red-black one-line (right) orderings 

side of Figure 3.1. Here, the reduced matrix has the form of the coefficient ma- 
trix of ( 1.1), where the block diagonal matrices D and F consist of uncoupled 
tridiagonal blocks. 

Note that the individual lines in the reduced grid, and therefore the associated 
tridiagonal matrices, vary in size. For the natural ordering, the lines have sizes 

2, 4, ..., n - 1, n - 1, ... ,4,2 for odd n, 
2 , 4 , . .. , n - 2 , n , n - 2 , . .. ,4 , 2 for even n . 

The other two orderings are defined so that lines of less than maximal size are 
paired up to form sets of fixed size. This will be of use on parallel architectures 
(see ?6). In the torus one-line ordering, each line of less than maximal size 
from one corner of the grid is followed by the line from the opposite corner 
that would be obtained by continuing the grid periodically; these pairs of lines 
then are organized as in the natural ordering. For example, for odd n, the first 
four lines are the one in the SW corner containing two mesh points, followed 
by the line closest to the NE corner containing n - 3 points, the line of size 4 
in the SW corner and then the line of size n - 5 closest to the NE corner. The 
ordering for n = 7 is shown in the left side of Figure 3.2. Thus, the reduced 
grid can be grouped together into Fn/21 sets consisting of either one or two 
lines, each containing a total of n - 1 mesh points. For even n, the analogue 
produces n/2 sets of points, each of size n . 

We define the fourth ordering in terms of these fixed-sized sets. Suppose 
first that they are listed consecutively according to their appearance in the torus 
ordering. For example, for the grid on the left side of Figure 3.2, the listing is 

{1, 2}, {3, 4}, {5}, {6}, 

where these integers are those outside the domain in the left side of Figure 3.2. 
Now let this listing be permuted in alternating fashion, 

{1, 2}, {5}, {3, 4}, {6}, 
and assign indices of increasing value to these sets. As above, let the grid point 
indices be assigned so that they are consistent with this ordering of lines. We 
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* X24 X6 X 12 X24 X6 X 18 
4 3 

X18 * X23 * XS ' Xii X12 * X23 X * X17 

* X17 * X22 - X4 XlI X22 * X4 

XIO * X 16 * X 21 - XX3 2 X16 - XIO * X21 * X3 1 

* Xg X15 X20 X15 Xg X20 - 

X2 - X8 - X14 - X19 X2 - X14 * X8 - X19 

X I X7 X13* 6 xi X13 X7 * 4 

1 3 5 1 3 2 

FIGURE 3.2 
The reduced grid derived from a 7 x 7 grid, with torus one-line 
(left) and alternating torus one-line (right) orderings 

refer to the result as the alternating torus one-line ordering. An example is 
shown in the right side of Figure 3.2. This ordering is well defined for all n, 
but we will show below that it is most useful when Fn/21 is even, where it 
corresponds to a red-black ordering. 

For all four orderings, the reduced matrix has the form 

(3.1) S = D- C, 

where D is a block diagonal matrix whose individual blocks are tridiagonal 
matrices. Consider the block Jacobi iterative method 

u(b) = Bu(b) + D-1s, 

where B = D- IC is the block Jacobi iteration matrix. The standard measure 
of the effectiveness of this method is the spectral radius p(B); the iteration is 
convergent provided p(B) < 1 , and convergence is more rapid if p(B) is closer 
to 0 [18] (cf. ?6). We have left unspecified the particular ordering determining 
(3.1); the iteration matrices for the various ordering strategies are all similar 
to one another, so that p(B) is independent of ordering. In [4], we derived 
bounds on p(B) for the version of B arising from the natural ordering. The 
results are summarized as follows; see [4] for proofs. 

Theorem 3. For the one-line orderings, if be > 0 and cd > 0, then 

p (B)?< 2(JFe?~ +fcd)' 
a2 - 2(/be+ vd)2 + 4bcde(1 - cos(7ch)) 

If be < 0 and cd < 0, then 

B) < max(4bcde, 20bcde + lbel, 20bcde + lcdl, lbel + lcdl) + 2(lbel + lcdl) 
a2 + 2(\bje - cdj)2 + 4 bcde(1 - cos(7rh)) 

whenever a /2 - cd - e) -2 bcde> 0. 
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Corollary 1. For the centered difference scheme, if IYI < 1 and 151 < 1, then the 
one-line Jacobi iteration matrices satisfy 

p(B) < ( 
2 

+ 12) 
8 _ 2+ 2 + 2 ,(I - y2)(1 _ 62)(1 - cos(7h)) 

If IYI, 1 , 161, 1 and (221)2_ 1) < 4, then 

p(B) < 28~~I,(Y, 6) + Y2 _ I + 62 _ I 
Y2~~~~~~ 

8+( 2'2-1-?2 +( 2 1)252 1)(1- cos(7h)) 

where 

,u(y (5) =max(4 (2 _ 1)(52_ 1),2 2 1) + y2 _ 1 

2_1(2 1) + 52 _ 2 y2 _ 1 + 52 _ 

For the upwind difference scheme with a > 0, T > 0, 

(1+2+ 1+2a)2 
p(B) < 

2(2 +y + a)2( l+ + +2a 2+ 2 (1+ 2y)(1+2)(1-cos(7h)) 

We remark that the analysis is easily adapted to handle upwind methods 
applied with negative y or 65. In such cases, y (or () is replaced by IYI (11) 
here, as well as in Corollary 2 below. 

We now show that Young's analysis of relaxation methods also applies to 
these splittings. Let C = L + U, where L and U are strictly lower triangular 
and upper triangular, and let Y. = (D - w9L) I[(1 - w-))D + wU] denote the 
block SOR iteration matrix. Recall the definition of block-consistent orderings 
from [19]: a block matrix M = M,_ (1 < i, j < m) is block-consistently 

ordered if the integers 1, ..., m can be partitioned into disjoint sets {5k}k=1 
such that if Mij ?O ?, then i E Sk implies i E Sk-I forj < i, and i E 5 k+1 
for j > i. We have the following result: 

Lemma 1. For the natural, red-black and torus orderings, the reduced matrix is 
block-consistently ordered for all n > 0. For the alternating torus ordering, the 
reduced matrix is block-consistently ordered if and only if Fn/21 is even. 

Proof. The coefficient matrix for the natural ordering is block tridiagonal; the 
analysis for this ordering and its red-black analogue is classical, see [19]. In 
discussing the torus and alternating torus orderings, it will be convenient to 
refer to the line indices of the natural ordering (i.e., from the left side of Figure 
3.1). Let V be a mapping of these indices to those of the torus ordering.' 
Then 5k = { V(k)} determines a consistent ordering. For the alternating torus 
ordering, note that its block structure is different than for the other orderings, 

iFor example, for Figures 3.1-3.2, yV(l ) = 1 , ,v(2) = 3, ,v(3) = 5, etc. It is possible to derive 
a precise expression for , , but we do not believe it adds insight. 
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X12 5 X6 * X18 * 5 (B) 
* Xi X5 X17 

X16 * X10 - X4 

* X15 Xg * X3 4 (R) 

X2 * X14 * X8 

* X1 *_X13 *_X7 3 (?) 

1 (R) 2 (B) 

FIGURE 3.3 

The alternating torus ordering for odd Fn/21. Line indices cor- 
respond to the natural one-line ordering. Terms in parentheses 
indicate that the associated matrix does not have block 
Property A 

because pairs of lines are grouped together: using the indices of the natural 
ordering, lines j and Fn/21 + j are coalesced into one set. If Fn/21 is even, 
then j and Fn/21 + j have the same parity, and the ordinary red-black coloring 
of lines determines a red-black coloring of the alternating torus ordering. A 
consistent ordering is determined by the partitioning 

t = {{1, [n/21 + 1}, {3, Fn/21 + 3}, ... }, 

S2= {{2, Fn/21 + 2}, {4, Fn/212 4}1 }. 
If [n/21 is odd, then lines 1 and Fn/21 + 1 have the same color, since they 
comprise one set, but line Fn/21 must share this same color, since (proceeding 
from the SW corner) alternating lines are assigned opposite colors (see Figure 
3.3). As a result, the alternating torus ordering does not have block Property A, 
and it therefore cannot be consistently ordered (see [19, ?5.4]). O 

Theorem 4. For the natural, red-black and torus one-line orderings, and for the 
alternating torus ordering when fn/21 is even, the eigenvalues ?u} of B and 
{i } of Y. are related by 

(A + 2 2 2 
(3.2) _?_- 1)2 =c U A . 
Moreover, if p(B) < 1 and either be > 0 and cd > 0 holds or be < 0 and 
cd < 0 holds, then the choice 
(3.3) c*= 2 

1 + 1-p(B)2 

minimizes p(Y,) with respect to co, and p(5f*) = o* - 1. 
Proof. The first assertion follows directly from [19, Chapter 14, Theorem 3.4]. 
For the second assertion, it was shown in [4] that if either condition on be and 
cd holds, then D is similar to a symmetric positive definite M-matrix and that 
consequently, B is similar to a symmetric matrix. Therefore, all eigenvalues of 
B are real. The choice of optimal SOR parameter follows from [19, ??5.2 and 
14.3]. o 
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Remarks. When be > 0 and cd > 0, a sufficient condition to ensure that 
p(B) < 1 is 

(3.4) a > 4(V4B?e + ' )2, 

which holds for the two difference schemes. In this case, experiments described 
in [4] indicate that the bounds of Corollary 1 of Theorem 3 for IYI, 151 < 1 
are good indicators of spectral radii. The bound for IYI, 161 > 1 of Corollary 
1 does not always guarantee that p(B) < 1. However, experimental evidence 
and Fourier analysis [4] suggest that the smaller bound 

p(B)< -+ ) 
8 + ( _St + \2 2 

applies in this case, and this bound is always less than one. Finally, when 
(3.3) is valid, the results of [5] imply that the Chebyshev semi-iterative method 
applied to the reduced system, with preconditioning by the block diagonal D, 
has asymptotic convergence rate equal to one half that of the block SOR method 
with co = co* . (Cf. [11] for related results.) 

4. TWO-LINE ORDERINGS 

An alternative to the ordering strategies of the previous section is to group 
the points of the reduced grid by pairs of horizontal or vertical lines. Such two- 
line orderings also result in matrices that have block Property A. Examples with 
horizontal lines, for n = 6, are shown in Figure 4.1. The left side of the figure 
shows a natural two-line ordering, and the right side shows a red-black two-line 
ordering. In the following, we perform an analysis of two-line orderings for the 
case of horizontal lines. We use the natural ordering to motivate the analysis; 
as above, the results also apply to the red-black ordering. 

The reduced matrix S for the natural two-line ordering has block tridiagonal 
form 

S = tri[Sj j-l, Sjj, S+1. 

Within the line pairs, points are ordered from left to right (as in Figure 4. 1), so 
that the submatrices on the block diagonal are banded. For even n, the block 
diagonal consists of n/2 uncoupled pentadiagonal matrices of order n of the 
form 

.. -2bc * -2bd-d dd2 
-2ce : -2de -d 2 

S.- = c 2 -2bc * -2bd -d 2 

c2 - 2ce * -2de -d 

1 < j < n/2. Here, "*" is defined as in the center point of Figure 2.1, or 
by (2.2) for points next to O0. The off-diagonal blocks have the irregular 
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X13 - X * X17 * X7 - Xg Xli - 

* X14 - X16 * X18 X8 - X10 * X12 

X7 - X9 * Xii * X13 * X15 - X17 - 

* X8 - Xo X12 X14 - X16 * X18 

XI * X3 - X5 * XI * X3 - Xs 

* X2 X4 X6 X2 X4 X6 

FIGURE 4.1 
The reduced grid derivedfrom a 6 x 6 grid, with natural two-line 
(left) and red-black two-line (right) orderings 

tridiagonal form 

b2 

2bc b2 2bd 
b2 

Si. j-1= 2bc b 2 2bd 
b2 

2 e2 2de 
22 

2ce e 2 2d e 

2ce e2 2de 

For odd n, the last (Fn/2lth) row and column have slightly different form, in 
which the last diagonal block is the tridiagonal matrix of order [n/2j, 

(4.1) tri[-c , *, -d ], 
and the neighboring off-diagonal blocks are adjusted in an analogous manner. 

Let D now denote the block diagonal matrix defined by DJ = Sjj, and let 
S = D - C denote the two-line Jacobi splitting. Consider the two-line Jacobi 
iteration 

u(b) = Bu(b) + D-1s 

for solving (1.2), where B = D_1C. Convergence again depends on p(B). 
Let S = Q1 SQ represent the symmetrized reduced matrix when it exists, and 
let D = Q 1DQ and C = Q CQ. We first bound p(B) in the case where 
be > 0 and cd > 0, i.e., for the centered difference scheme when AYI < 1 
and 161 < 1, and for the upwind scheme. The analysis essentially consists 
of the following two results, which bound the minimum eigenvalue of D and 
maximum eigenvalue of C. These will then be combined to bound p(B). 
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Lemma 2. When be > 0 and cd > 0, the minimum eigenvalue of the sym- 
metrized two-line block diagonal matrix D is bounded below by 

2 ~~~~~~~~~~~~~~~~~~~~~~2 
a -2(vd + Ie)2 - 2cd + 4x/bcde(l - cos7rh) + 4cd(l - cos 7rh). 

Proof. Examination of Figures 2.2 and 4.1 reveals that all of the matrices on 
the block diagonal of D, except the first and last, are identical pentadiagonal 
matrices of order n. They have the form 

bcd-e -2 bcde -cd 
(4.2) P -cd2 2 bcde - -2 bcde -cd 

-cd -2 bcde * -2,bcde -cd 

where "*" equals a2 _ 2be - 2cd except in the first and last entry, where it is 
a2 _ 2be - cd . If P' denotes either the first block, or for even n, the last block 
of D, then by (2.2), we have P' > P with inequality only on the diagonal. 
Hence, Armin(P') > Amin(P) A straightforward argument also shows that for all 

small h, the minimum eigenvalue of D does not correspond to an eigenvalue 
of the tridiagonal matrix (4.1). Hence, it suffices to bound Amin(P) from below. 

For this, let Tn denote the tridiagonal matrix tri[ 1 , 0, 1 ] of order n . Then 
2 Tn2 is a pentadiagonal matrix with O's on the first subdiagonal and superdiag- 

onal, l's on the second subdiagonal and superdiagonal, and 2's in all diagonal 
entries except the first and last, where the values are 1. Then we have 

(4.3) P = (a2 _ 
2be)I,-2bcd`eTn-cdTn, 

where In is the identity matrix of order n. But the eigenvalues of Tn are 

{2cos(j7th)}IJ=I, so that those of P are 

-a2 - 2be - 4vbcdecos(j2rh) - 4cd cos2(jlrh)}>n. 

The minimum corresponds to the choice j = 1 . o 

Lemma 3. The maximum eigenvalue of the symmetrized two-line block off-diago- 
nal matrix C is bounded by 

2lbel cos 27rh + 4 bcdecos ih + o(h 2). 
Proof. Assume n is even; modifications to the argument for odd n are straight- 
forward. Let > denote the block tridiagonal matrix tri[R, 0, R], with m = 
n/2 block rows, where R = beIn . Let Y denote the block tridiagonal matrix 

tri[VT, 0, V] of the same order, where 
'O v 0 

v O v 
V= O 
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and v = 2Vbede. Then, C = M + Y . Since C is symmetric, we have 

p(C) = IICK12 < IIM1l2 + 11"112 

To bound 1II112 note that M is similar to the block diagonal matrix 

be diag{ T., ... , T } 

with n block rows, so that its eigenvalues are {2be cos ,2 }j7 . Hence, 

(4.4) II-12 = P(QW) = 2Ibel cos 1 2+h) 

For 11Y112we have 
|||| ylTy,1 1/2 11y21l 1/2 

2~~~~~~ 
Y2 is the block pentadiagonal matrix 

vvT T V2 

(V) 0 VTV+VVV 0 V2 
VV+VV vTV 2 0 V 0 VV VI 

(VT )2 0 TVV?VVT V 

(VT)2 0TV 

But V = 0, so that in fact Y is a block diagonal matrix, and we need only 
bound the spectral radii of VVT, VTV + VVT and VTV. We have 

V 2 
V2 v 

OvO 0 00 0 
V 0 2v2 0 V2 

VVT 0 0 0 0 0 

v 0 2v2 0 

0 2V2 0 v2 

T 
V V= 

V2 2v2 o V2 v 0 2v 0 v 

V20 V2 

Consequently, 
' v2 o 

V2 

T T V2 0 2v 2 0 V 2v2 V V+VV = v 0 2v vv 

V2 o 2v20 

<~V2 ? V2, 
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Thus, 

(4.5) p(VTV + VVT) = v [p(T,)]2 = 16bcde cos 7rh. 

Moreover, by permuting VVT and V TV so that nonzero entries lie on a tridi- 
agonal band in the upper left corner, we find that 

(4.6) p(V TV) = p(VV ) < v p(2Im + Tm) = 16bcde cos (1 + h) 

Bounds (4.5) and (4.6) are essentially the same as h -+ 0, which gives the 
asymptotic result 

(4.7) H1 112 < 4 bcde cos irh + o(h 2). 

The conclusion then follows from (4.4) and (4.7). El 

The idea used in both these proofs of squaring the tridiagonal matrix Tn 
to generate a pentadiagonal matrix appears in [14] for analyzing line iterative 
methods applied to discrete biharmonic problems. A simpler argument than the 
proof of Lemma 3, based on Gerschgorin's theorem, gives the weaker bound 
p(C) < 21bel + 4vbcde. This bound is close to the result of Lemma 3, but it 
is less useful for asymptotic analysis as h -+ 0. 

Theorem 5. When be > 0 and cd > 0, the spectral radius of the two-line Jacobi 
iteration matrix is bounded by 

2be cos 2rh?4 bcdecos 7rh 2 

a2 - 2(\ ?v + F)2 2cd + 4bcde( - cos rh) + 4cd(I COS2 7rh) 

Proof. Using the similarity transformation D1 C = QD 1CQ1 , we have 

p(D1 C) = p(D 1C) < 11D- H1211CH12 = p 
A~min (D)' 

where the last equality follows from the symmetry of D and C. The result 
then follows immediately from Lemmas 2 and 3. o 

Substitution of particular values of a - e gives the following bounds for the 
two difference schemes under consideration. 

Corollary 2. For the centered difference scheme, if IyI < 1 and 1f1 < 1, then 
the spectral radius of the two-line block Jacobi iteration matrix for the reduced 
system is bounded by 

(I -_ 2) cos 2rh + 2 _ )(1 2) cos rh 2 
+ o h 

8-( I_y2 + )2_(I_Y2+ 

2 1 _ y2) (I _ 2)(I - COS 7h) + 2(1 _ y2) (I - COS2 7h) 
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For the upwind difference scheme, the spectral radius is bounded by 

(1 + 26) cos 2rh + 2 12y)(1?25)cosirh + o(h ) 

2(2 + y + ?5)2 l_ _ + 1 -() + 2y) + 
2 2 I( 12y)(1 2)(1-cos7rh) + 2(1 + 2y)(1 - cos 7rh) 

If (3.4) holds, then the bounds of Theorem 5 are smaller than those of Theo- 
rem 3 for the one-line orderings. Consequently, the two-line bounds of Corollary 
2 are smaller than the one-line bounds of Corollary 1. 

Now consider the case be < 0 and cd < 0, which )rresponds to the cen- 
tered difference scheme when IyI > 1 and Ir > 1 . To bound p(B), we require 
an alternative to Lemma 2. Consider the case of odd n .2 Let P be as in (4.2), 
where "*" now represents 

(4.8) min(a 2-be-2cd, a 2-2be-cd) (=min(13+2y 2+2, 1 3+y 2+2)) . 

For any pentadiagonal matrix P' on the block diagonal of D, the diagonal 
entries of P' are greater than those of P, so that Amin(P') > Amin(P). If (4.8) 
is minimized by a2 _ be - 2cd (i.e., y2 < 52), then P satisfies 

2 2 
P = (a _ 

be)In-2VbcdeTn-cdT . 

(This differs from (4.3) in the coefficient of I .) Consequently, all eigenvalues 
of P have the form 

a 2-be - 4bcdecos 0 - 4cd cos2 0, 

for 0 E (0, 7r). By elementary calculus, we find that this expression is mini- 
mized at 0 = arccos( Fbe/`cd). The minimum value, a2, is a lower bound 

for Amin(D). If (4.8) is minimized by a2 - 2be - cd (y2> y 2) then 

P = (a2 -2be + cd)In-2b`deT7-cd T . 

The same argument shows that its minimum eigenvalue is bounded below by 
a 2-be +cd . As above, these bounds for Amin(P) are smaller than the minimum 
eigenvalue derived from (4.1). Combining these observations with Lemma 3, 
we have the following result. 

Theorem 6. For be < 0 and cd < 0 and even n, the spectral radius of the 
two-line Jacobi iteration matrix is bounded by 

( 21bel cos 27rh + 4 bcdecos irh when (4.8) is minimized 

a2 by a2 - be - 2cd, 

21bel cos 27rh + 4 bcdecos irh when (4.8) is minimized 

a2 _be +cd by a2 2be - cd. 

2In this case, only the first two terms of (2.2) occur. For even n, a somewhat weaker bound 
can be derived by replacing "*" with a2 _ be - cd. 
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For the centered difference discretization when YI> 1 and 161 > 1, the bounds 
are 

22 
I (J -1)cos2zh?2 (y- -1)(j2- 1)cos2th 2 2 

8 ~~~~~-for y?, 

(2 -_ 1) cos 27rh + 2 (y -1 )(-)cos7rh for y2 > 2 

As we show in ?6, the bounds from Theorem 5 and Corollary 2 appear to be 
tight, whereas the results of Theorem 6 are pessimistic. 

Finally, the analysis of [4] implies that for both difference schemes, when 
be > 0 and cd > 0, the block pentadiagonal matrix D is a symmetric positive 
definite M-matrix. Hence, we have the following result for the two-line SOR 
iteration matrix Y.,2 
Corollary 3. For the two-line orderings, the eigenvalues {jt} of B and {,} of 

Y., are related by (3.2). For the two difference schemes under consideration, if 
be > 0 and cd > 0 holds, then (3.3) minimizes p(Y5) with respect to co, and 

( ) = * - 1 . 

5. ASYMPTOTIC ANALYSIS 

In this section, we outline the results of Parter [ 13] and Parter and Steuerwalt 
[15] that reveal asymptotic convergence rates as h -+ 0 for fixed a and T in 
(1.4). (See also [12].) We emphasize that we are only filling in some minor 
details; all the analysis is contained in [13, 15]. Assume that S is a matrix such 
that S/h2 is a discrete approximation to v with truncation error o(1) at all 
mesh points of Q not next to the boundary, and 0(1) at points next to 0Q. 
Let S = D - C be a splitting. The following result is proved in [1 5]: 

Theorem 7. Suppose the following conditions hold for all small h: 

(PSI) p(D 1C) <1. 
(PS2) p(D 1C) is an eigenvalue of D 1C. 
(PS3) 11C112 is bounded independent of h. 
(PS4) There is a smooth function q satisfying q(x, y) > qo > 0 on Q, such 

that 

(5.1) (Cu, v) = (qu, v) + E, 

where in (5.1), q refers to the vector of mesh values, and E = he, (u, v) 

+ h2e2(u, v) depends on a and T . 

Then as h -0, p(D 1 C) = I -1A h2 + o(h2 where Ao is the smallest eigen- 
value of the problem 

(5.2) Vu = Aqu in Q, u =0 on OQ. 

In assumption (PS4), e, is a function of first-order differences in u and v 
and e2 is a function of second-order differences; see [15] for a more precise 
statement. 
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By Theorem 1, the reduced matrix is an appropriate approximation to -S. 
Condition (PS1) has been established in ??3 and 4. For both the one-line and 
two-line Jacobi splittings, condition (PS2) follows from the Perron-Frobenius 
theory, using the fact that D is an M-matrix for all small enough h [4]. Condi- 
tion (PS3) follows from Lemma 3 and ?4.3 of [4]. Thus, it remains to determine 
q for condition (PS4). Much of [ 13] and [ 15] is concerned with how to do this. 
In particular, ?7 of [13] and ?9 of [15] imply that q = 1 for the one-line Jacobi 
splitting for the reduced system, and q = 3/4 for the two-line Jacobi splitting. 
It is straightforward to verify that the eigenfunctions and eigenvalues of (5.2) 
for q 1 are 

2 2 
(j, k) = ux/2 si(~) /2 si(ay T ,2 b2 2 

u( k)=e xl2sin(j7rx)e"Y sin(k7y), Ak + 4 + i + k) 

for integers j, k > 1. The minimum eigenvalue is Ao = 2+ + 2X2. 
Hence, we have the following asymptotic result (which applies for both dif- 
ference schemes): 

Corollary 4. The spectral radii of the block Jacobi iteration matrices for the one- 
line orderings of the reduced system are bounded by 

1_ (- + - +27r2) h2+o(h2), 

and the spectral radii of the block Jacobi iteration matrices for the two-line or- 
derings are bounded by 

1-( + -3 + -7r h +o(h) 

For large a and T (and small enough h), these bounds are essentially of 
theform I-c(y2 +2). 

The analyses of ??3 and 4 give asymptotic bounds of 

(2 12 2) 2 2 1- (?hI-i4i- )h2, 1- 

for the one-line and two-line Jacobi iteration matrices, respectively. These re- 
sults agree with those of Corollary 4 except in the coefficient of r 2. They 
are pessimistic because the numerators and denominators come from separate 
bounds, and (for the one-line case) because Gerschgorin's theorem is used for 
the numerator. However, it may be more important to know the spectral radius 
in the nonasymptotic regime, i.e., for particular values of y and a not close to 
zero. The numerical experiments of ?6 below indicate that the bounds of ??3 
and 4 are good indicators of spectral radii in such cases. 

Note that smaller values of q in Theorem 7 produce smaller spectral radii. 
The analysis of 1[15] shows that for the 1-line Jacobi splitting of the unreduced 
system (which gives rise to methods comparable in cost to both methods con- 
sidered here for the reduced system), q = 2. Thus, the asymptotic value of 
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the spectral radius is smaller for the reduced system. An alternative proof of 
this fact, derived from regular splitting arguments (which are less dependent on 
asymptotics) is given in [6]. This observation is in agreement with results on 
spectral radii in [4]. Thus, asymptotic convergence behavior will be worse for 
the full system. 

6. NUMERICAL EXPERIMENTS AND IMPLEMENTATION 

In this section, we present the results of numerical experiments that con- 
firm and supplement the analysis of ??3-4. For the two-line ordering, we com- 
pare the bounds on spectral radii of iteration matrices with computed spectral 
radii, and for all the orderings considered, we examine the performance of the 
Gauss-Seidel and SOR methods for solving the reduced system arising from the 
centered difference discretization of the convection-diffusion equation. Except 
where indicated, all computations were performed on a VAX-8600 in double 
precision Fortran. The reduced matrices were computed using PCGPAK [16]. 
All spectral radii were computed using the QZ algorithm in EISPACK [8, 9]. 

6.1. Spectral radii for the two-line methods. Tables 6.1-6.3 show the com- 
puted values of the spectral radii of the Gauss-Seidel iteration matrices for the 
two-line orderings, for three values of h and different choices of the parameters 
y and J. In addition, the last column of each table shows the asymptotic limits 
(as h -+ 0) of the bounds on these spectral radii, when such a bound exists. 
For lYl, 1k1 < 1, these quantities are the squares of the limiting values from 
Corollary 2, where the values for y or a = 1 are the limits as y, -+ 1 . For 
Table 6.3, when IyI > 1 , we use Theorem 7. As in [4], the experimental results 

TABLE 6.1 
Spectral radii and bounds for the two-line Gauss-Seidel iteration 
matrices, centered differences, 5 = 0 

-y h = 1/8 h = 1/16 h = 1/32 Asymptotic 
Bound 

.2 .42 .74 .86 .90 

.4 .33 .55 .63 .66 

.6 .22 .34 .38 .40 

.8 .11 .16 .18 .19 
1.0 .01 .02 .063 .02 
1.2 .03 .04 .04 _ 
1.4 .05 .06 .06 _ 
1.6 .06 .06 .07 
1.8 .07 .07 .07 
2.0 .07 .07 .07 
3.0 .07 .07 .07 

3 This computed spectral radius exceeds the analytic bound. Computations on a Sun 3/60 
gave the same results. We believe that this eigenvalue computation is affected by ill-conditioning, 
although we do not understand the difficulty. 
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show that the bounds are good approximations to the limits as h -+ 0 when 
I < 1 and 161 < 1, and the bounds for IyI, 161 > 1 are pessimistic. For 
values of y and 5 where the analysis does not apply, the computed spectral 
radii are very close to zero. Note that the asymptotic results are expressed in a 
nonstandard way. In contrast to the analysis of ?5, y and a are fixed here as 
h - 0, so the continuous problem (1.4) is varying. 

6.2. Performance of the block iterative methods. Figures 6.1-6.3 summarize the 
performance of the block iterative methods for solving various examples of the 
discrete convection-diffusion equation (1.4) with Dirichlet boundary conditions. 
In all cases, centered differences were used to discretize the first-derivative terms, 
and the mesh size was h = 1/32, so that the order of the linear system was N = 
961 . The curves in the figures represent the average iteration counts for three 
test problems, determined by three initial guesses with random values in the 
interval [-1, 1]. In all cases, the right-hand side s was identically zero. The 
convergence criterion was llr12/Hr0H2 < 10-6, where ri = s - Su(b) = -Su(.b) 
is the residual at the ith iteration. 

The left side of each of these figures contains results for the one-line order- 
ings, and the right side contains results for the two-line orderings. Experiments 
were run for values of y or a equal to multiples of 0.2 in [0, 2], plus y (or 
6) = 3. Figure 6.1 corresponds to the case 6 = 0 (i.e., only the uX first-order 
term was present in (1.4)), Figure 6.2 to y = 0 (only uy), and Figure 6.3 to 
y = a (UX and uy). The results are for the block Gauss-Seidel method with 
the natural, red-black and torus orderings. (The iteration matrices for the al- 
ternating torus ordering are similar, via permutation matrices, to those for the 
one-line red-black ordering, so that these orderings produce identical iterates.) 
In addition, results for the block SOR method with the natural ordering are 
shown for some choices of y and 6. For SOR, we used the optimal value of w') 
determined by (3.3), where p(B)2 is taken from Tables 6.1-6.3 and analogous 
results from [4], using the values for h = 1/32. 

Two-hne, ux only 

80 

70p ' Gauss-Seidel, nat'l -70 -Gauss-Seidel, n;t'l 

z , ~~~------I------ Gauss-Seidel, torus --------Gas-edl\/ 

60 ~ \2\\ -------------- Gauss-Seidel, r/b - 60 \ ' * -GSOR , na' 

50 0 

40 ~40- 

30 ~~~~~~~~~~~~~~~~~~~~~~30 
20 

10 10 

e 1 e 

?0 0'5 1 1 5 2 2'5 3 ?( 0.5 1 1 5 2 25 3 

Gamm 
Gamma 

FIGURE 6.1 
Average iteration counts, h = 1/32, a = 0 
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TABLE 6.2 
Spectral radii and bounds for the two-line Gauss-Seidel iteration 
matrices, centered differences, y = 0 

S h = 1/8 h = 1/16 h = 1/32 Asymptotic 
Bound 

.2 .42 .74 .85 .90 

.4 .32 .54 .62 .65 

.6 .19 .30 .34 .36 

.8 .07 .11 .12 .12 
1.0 0 0 0 0 
1.2 .03 .04 .04 _ 
1.4 .06 .08 .09 
1.6 .09 .13 .13 _ 
1.8 .12 .16 .18 _ 
2.0 .14 .20 .22 _ 
3.0 .21 .36 .41 _ 

TABLE 6.3 
Spectral radii and bounds for the two-line Gauss-Seidel iteration 
matrices, centered differences, y = 5 

ly h = 1/8 h = 1/16 h = 1/32 Asymptotic 
Bound 

.2 .39 .67 .77 .81 

.4 .23 .37 .42 .44 

.6 .09 .14 .16 .16 

.8 .02 .03 .03 .03 
1.0 0 0 0 0 
1.2 .01 .02 .02 .03 
1.4 .04 .05 .05 .13 
1.6 .08 .09 .09 .34 
1.8 .12 .12 .12 .71 
2.0 .16 .16 .16 1.27 
3.0 .32 .33 .33 9.00 

We make the following observations concerning these results: 
(1) In most cases, the Gauss-Seidel method requires thirty or fewer iterations 

to reach the stopping criterion. In general, fewer iterations are required with 
the natural orderings than with the red-black orderings; a rough estimate is that 
the red-black orderings entail at most twice as many iterations as the natural 
orderings. An exception is when 6 = 0, where the performances of the natural 
and red-black two-line orderings are very close (see the right side of Figure 6. 1). 

(2) The best results are obtained when y or 6 are near one, and performance 
typically improves as IyI or 11 -+ 1 . For all values of y and a tested, the self- 
adjoint case (y = 6 = 0) required the largest number of Gauss-Seidel iterations. 
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One-line, uy only Two-hne, uy only 
80 80 

70 - Gauss-Seidel, at'l 70 - Gauss-Se,del, nat'l 
- ----------- Gauss-Seidel, torus -------------- Gauss-Se,del, r/b 

60 - -------------- Gauss-Se,del, r/b -_60 -_'_* __ SOR, at'l 

5O O 50 0 

0~~~~~~~~~~~~~~~~~~~~~ 
30 30 

Delta Delta 

FIGURE 6.2 
Average iteration counts, h =1/32, Y = 0 

In these cases, for which the results are not shown on the figures, the stopping 
criterion was typically not reached after 150 iterations. In general, performance 
is in accordance with the results on spectral radii from Tables 6.1-6.3 and [4]. 

(3) The best results for large y or a are for the two-line orderings with a-=0 

(Table 6.1 and Figure 6.1). This is because as IYI grows, S essentially consists 
of its block diagonal D plus a small perturbation. For large 3 and y = 0, a 
vertical two-line splitting would give better results than the horizontal splitting 
used. 

(4) SOR was much more effective than Gauss-Seidel when the latter was 
slow. We examined SOR only in cases where the spectrum of the block Jacobi 
iteration matrix is real, i.e., where either IYI < 1 and 1J < 1 or (for the one-line 
ordering [4]) IYI > 1 and 5a1> 1 . Thus, (3.3) applies. In variable-coefficient 
problems of a similar character, it would be realistic to use an adaptive method 
to estimate the optimal value of w( (see, e.g., [ 19]). For other values of y or ~, 
the spectral radius of the Gauss-Seidel iteration matrix is already very small, and 
we did not experiment with SOR. To keep the graphs from being too detailed, 
the SOR results are shown only for the natural orderings. Like Gauss-Seidel, 
with the red-black orderings SOR typically required somewhat more iterations, 
but it displayed the same general character as it did with the natural ordering 
(i.e., graphs of iteration counts have similar slopes). 4' 

(5) The performance of the Gauss-Seidel method with the torus ordering is 
very close to its performance with the natural one-line ordering. 

The error e20 u-u, at the jth step of each of the methods under con- 
sideration satisfies eJ = MeJ_, where M is the iteration matrix. Thus, for 
large enough j, the error will be dominated by the eigenvector corresponding 
to the spectral radius, and the asymptotic (in terms of iteration counts) anal- 
ysis of ??3 and 4 can be used to predict behavior. However, this does not say 
anything about how other components of the error affect performance, and it 

4An exception is the self-adjoint case, y = $ =- 0, where SOR was faster for the red-black 
ordering than for the natural ordering; similar observations have been made for the full system in 
[7]. 



ITERATIVE METHODS FOR REDUCED SYSTEMS 237 

One-lme, ux and uy Two-lne, ux and uy 
80 . . , - - , 80 w , , - , .~~~~~~~~~~8 
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----------I Gauss-Seidel, torus -- ------ Gauss-Seidel, r/b 
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FIGURE 6.3 

Average iteration counts, h = 1/32 Y = 6 

also does not explain the effects of different orderings. Figures 6.4-6.6 examine 
the question of when the asymptotic behavior takes effect, in the Gauss-Seidel 
method. Each figure graphs the ratio I1ej11L2/Iej-1 112 for the natural and red- 
black versions of both the one-line and two-line orderings, for two problems, 
one where y or 6 is less than one, and one where y or 6 is greater than one. 
Figure 6.4 shows the case where y = .6 and 1.6 and 6 = 0; Figure 6.5 shows 
the case where y = 0, and 6 = .6 and 1.6; and Figure 6.6 shows the case where 
Y = 6 = .6 and 1.6. These results are for one of the initial guesses used in the 
experiments described above. In all cases, the iterations were performed until 
the (stringent) stopping criterion 11ei 112/lIe0 112 < 1 0 6 was satisfied. 

The results show that the behavior of the Gauss-Seidel method is typically 
closer to that predicted by the asymptotic analysis when the natural ordering is 
used, and that fewer iterations are required before the asymptotic performance 
is seen. The one exception in these examples is where 6 = 0 with the two-line 
ordering (Figure 6.4); in this case the natural and red-black orderings display 
similar asymptotic behavior. Recall that this was the one case where the per- 
formances were similar. We also remark that the asymptotic performance is 
typically displayed only after the stopping criterion used for Figures 6.1-6.3 is 
satisfied. 

One-lune, ux ondy Two-hne, ux only 

0 9 - Gauss-Seidel nat' ' 0 9 - Gauss-Seidel, nat'1 
,.,' - ...----- Gauss-Seidel, r/b -------------- Gauss-Seidel, r/b 

00 - rho 08 .. . -- r 

07 0.7 

0 06 -s 06- 

-gamman=0.6> 
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0 40. - 0 40.3 

FIGURE~~~~~~~~gmm- 6. 
02pproac 02aypoi efrane /2 

01 0 1 

0 10 20 30 40 50 60 0 10 20 30 40 50 60 

IterenatLsIeain 

FIGURE 6.4 
Approach to asymptotic performance, h 1/32, 6 =0 
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TABLE 6.4 
Euclidean norms of the Gauss-Seidel iteration matrices 

One-line Two-line 
Natural R/B Natural R/B 

6 = 0 - = 0.6 .86 1.38 1.12 1.35 
= 1.6 .27 1.40 1.00 1.27 

y= 0 6 = 0.6 .86 1.38 .92 1.47 
6 = 1.6 .27 1.40 1.57 1.65 

'-y=S 'y= 0.6 .53 1.40 .87 1.46 
= 1.6 .53 1.40 1.14 1.65 

One-hne, uy only Two-hne, uy only l~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
0 9 -Ga...-Seidel, nat 'l - 0 9 i - Ga...-Seidel, nat'l- 
t 06 ,ls A . . > , r/b 

- 
06 

--- Ga.s.-Seidel, r/b 

0507 050 

04 03 04 

0 03 0 03 

0 2 delta=l 6 02 

01 - -- 01 

0 10 20 30 40 50 60 00 10 20 30 40 50 60 

Iteranlons Iterations 

FIGURE 6.5 
Approach to asymptotic performance, h 1/32, y = 0 
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FIGURE 6.6 
Approach to asymptotic performance, h =1/32, Y = 3 

With M = , the errors for the Gauss-Seidel iteration satisfy e1 = Sj'eI, so 

that [fJ II would give more precise predictions of the behavior of the errors. 
Table 6.4 shows I2 Y 2 for the twelve examples of Figures 6.4-6.6. These 
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norms were computed by taking the maximum singular value, acquired using 
LINPACK [3] (in double-precision Fortran) on a SUN 3/60. The results show 
that the norms for the natural orderings are typically less than one, and the 
norms for the red-black ordering are typically greater than one as well as greater 
than those for the natural ordering. Thus, the results are largely consistent 
with the numerical behavior described above. There are cases, however, where 

Ily 112 > 1 but the asymptotic behavior is good, e.g. y = 0, 3 = 1.6, two-line 
natural ordering (see Figure 6.5). 

6.3. Implementation and parallelism. We now outline the implementation costs 
of the block iterative methods for solving the reduced system. We focus on the 
block SOR iteration, of which the Gauss-Seidel method is a special case. As- 
sume that the reduced matrix has the form Sij, where the indices refer to the 
blocks associated with the lines of the ordering in use. For example, for the 
natural two-line ordering, i and j vary between 1 and n/2 and Sij = 0 for 

Ii - l I> 1 . Let S = D - (L + U), where D, L and U are blocked in an 

analogous manner, and let s and z u (b) be indexed in an analogous man- 
ner. Note that each block of D is a banded matrix of total bandwidth either 
three (for the one-line orderings) or five (for the two-line orderings). Assume 
for simplicity that the LU-factorization of each Di can be computed without 
pivoting. (This is the case whenever D is diagonally dominant.) 

The block SOR iteration has the form 

/ M+1\ (m)L-o (M) -D_ S 'm+ +D'i, ( Z6. 1 ) z . i E Lii Z ( )+ E Ujj ) i 
j<i j>i 1 

where i varies from 1 to the number of blocks in the matrix. Consider the com- 
putations involving the matrices D, L, and U. Each step requires a matrix- 
vector product by the ith block row of U and a matrix-vector product by the 
ith block row of L, followed by a linear solve in which the coefficient matrix 
is the ith block of D. The cost of the matrix-vector products (in terms of 
multiply-adds) is essentially equal to the number of nonzeros in the ith block 
rows of L and U. Moreover, assuming that Di has been factored, the cost 
of the linear solve is equal to the number of nonzeros in Di. Consequently, 
for any of the orderings, the total cost of the matrix computations on a serial 

computer is approximately 9n 2/2, the number of nonzeros in S. All the other 
computations (vector adds and scalar-matrix products) are clearly independent 
of ordering. The factorization of the blocks of D is slightly more expensive for 
the two-line ordering than for the one-line ordering, but both are of the order 
of the cost of one iteration, so that the difference is negligible. Pivoting will 
have a somewhat more detrimental effect on the two-line orderings than on the 
one-line orderings. 

We consider parallel implementations of the iterative methods for orderings 
where all block rows of the reduced matrix are of the same size. This is the case 
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for the torus one-line orderings and for the two-line orderings when n is even; 
the size is approximately n. It is straightforward to show that the construction 
of the reduced system is fully parallelizable. Let nr denote the number of block 
rows; for all orderings, nr n/2. Assume further that k divides nr, and let 
the processors be indexed from 1 to k. 

For k < n/4, the iterations for the natural two-line ordering can be pipelined 
using the methods of [1]. The architecture need not have a more complex 
topology than a linear array, and our discussion applies as well to shared memory 
machines. A (block) step of the computation is defined by the following rule: 

at the ith step, Processor j is performing the (i - j + 1)st 
iteration on the first j x nr/k block rows. 

That is, at step one, Processor 1 performs the first iteration on the first nr/k 
block rows. Then, at step 2, Processor 2 performs the first iteration on the 
second nr/k block rows, and Processor 1 performs the second iteration on the 
first nr/k block rows. The first iteration is completed by Processor k after 
k such steps, and every subsequent step results in the completion of one more 
iteration. All processors are busy except during the first and last k - 1 steps. 
For t iterations, the speedup (in arithmetic) is 

k 
1 +k/t 

Thus, the pipelined implementation is efficient whenever t is large relative to 
k. For architectures with distributed memory, neighboring processors must ex- 
change vectors of length (approximately) n between steps, and some overlap of 
communication and arithmetic is possible. The torus one-line ordering cannot 
be pipelined in the same way, because the first block step of iteration m + 1 
requires the solution value from the last block step of iteration m. 

The alternating torus ordering requires that [n/21 be even in order to corre- 
spond to a red-black ordering; no additional assumptions on n are needed for 
the two-line red-black ordering. Both these red-black orderings are then fully 
parallelizable on up to n/4 processors, where the alternating torus ordering re- 
quires a ring architecture. For all indices i with red color, the computation (6. 1) 
consists of a set of independent block matrix-vector products by the nonzero 
blocks of U, followed by a set of independent block matrix solves. Then, for 
all indices i with black color, the steps of (6.1) consist of a set of independent 
block matrix-vector products by the nonzero blocks of L, followed by a set 
of independent block matrix solves. Unidirectional communication between 
neighboring processors of the vectors of length n is needed twice, prior to the 
multiplications by L and U. Overlap with arithmetic is possible. 

In ?6.2, we found the methods to be very effective on model problems. For 
the small values of t observed, it appears that the inefficiency of the (two-line) 
natural ordering owing to pipelining will often be similar in scale to the some- 
what slower performance displayed by the red-black orderings. Consequently, 



ITERATIVE METHODS FOR REDUCED SYSTEMS 241 

we expect the performance of the two classes of orderings to be comparable on 
parallel architectures. 

7. CONCLUDING REMARKS 

In this paper, we have continued the analysis begun in [4] of block iter- 
ative methods for solving cyclically reduced linear systems derived from the 
convection-diffusion equation. We showed how the discrete reduced system is 
related to the underlying continuous problem, and we derived bounds on the 
spectral radius of the block Jacobi iteration matrix associated with two-line or- 
derings of the reduced grid. These bounds, together with analogous ones from 
[4], were combined with the Young theory to analyze the asymptotic conver- 
gence behavior of the Gauss-Seidel and SOR block iterative methods derived 
from several variants of both two-line orderings and one-line orderings. The re- 
sults express convergence behavior in terms of discrete cell Reynolds numbers 
ah/2, Th/2, and they are confirmed and supplemented by numerical experi- 
ments. The analytic and experimental results (as well as those of [2] and [1 5]) 
show that the nonsymmetric discrete problems arising from (1.4) are in some 
ways easier to solve than the symmetric ones. 
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